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The Cluj index ( [ ] [ ]iji j ij AMMIE ∑ ∑= )

2
1()( ) is related with the Cluj matrices (M =CJD, CJΔ, CFD, CFΔ) but in all graphs:                    

IE (CJD) = IE (CFD); IE (CJΔ) = IE (CFΔ). Thus for computation the Cluj index it is sufficient that we compute only IE (CJD) 
and IE (CJΔ). In this paper we compute   IE (CJD) and IE (CJΔ) for the first type dendrimer nanostar. 
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1. Introduction 
 
A single number, representing a chemical structure, in 

graph-theoretical terms, is called a topological descriptor. 
Being a structural invariant it does not depend on the 
labeling or the pictorial representation of a graph. Despite 
the considerable loss of information by the projection in a 
single number of a structure, such descriptors found broad 
applications in the correlation and prediction of several 
molecular properties1, 2 and also in tests of similarity and 
isomorphism3, 4. When a topological descriptor correlates 
with a molecular property, it can be denominated as 
molecular index or topological index (TI). 

A graph, G = G (V, E) is a pair of two sets: V = V 
(G), a finite nonempty set of N points (i.e. vertices) and E 
= E (G), the set of Q unordered pairs of distinct points of 
V. Each pair of points (vi, vj) (or simply (i,j)) is a line (i.e. 
edge), ei,j, of G if and only if (i,j)∈E(G). In a graph, N 
equals the cardinality, |V|, of the set V while Q is identical 
to |E|. A graph with N points and Q lines is called a (N, Q) 
graph (i.e., a graph of order N and dimension Q). Two 
vertices are adjacent if they are joined by an edge. If two 
distinct edges are incident with a common vertex, then 
they are adjacent edges. The angle between edges as well 
as the edge length is disregarded.  

In an undirected connected acyclic graph, a given pair 
of vertices (i,j) is joined by a unique path p(i,j), that is, a 
continuous sequence of edges, with the property that all 
are distinct and any two subsequent edges are adjacent. 
The length of the path p (i,j) is equal to the number of 
edges in the path between vertices i and j. 

In an undirected connected cycle-containing graph 
between any two vertices, there is at least one path 
connecting them. If more than one path connects a given 
pair of vertices (i,j), we denote the kth path by the symbol 
pk(i,j). The shortest path joining vertices i and j is called 
geodesic and its length is the topological distance, (Δ )i,j. 
The longest path is the elongation and its length is equal to 

the detour distance, (D)ij. The square arrays which collect 
the lengths of the two path types are called the distance 
matrix, denoted asΔ , and the detour matrix, denoted as D, 
respectively: 

 
 

 
 
where Ne,p(i,j) is the number of edges on the 
shortest/longest path p(i,j). The subscript e in the symbols 
of the above matrices means that they are edge-defined, 
that is, their entries count edges on the path p (i,j). 

When paths of length )( jipp ,1 ≤≤ are counted 
on path p (i,j), another pair of matrices can be constructed 
 

 
 

 
 

They are path-defined matrices and the number of 
paths Ne, p (i,j) is obtained from entries (Me)ij , Me = De or 
Δ e, by: 
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The unsymmetric Cluj matrices CJDu and CJΔ u have 
been introduced by Diudea5, 6. These matrices are  n×n 
square matrices and the subscript u denotes the 
unsymmetricity of matrices. The non-diagonal entries, 
(Mu)ij, Mu = CJDu or CJΔ u, in the two Cluj matrices are 
defined as: 
 

),(,),(, max)( jipijipiiju kk
VNM ==  

 

 

 
 

 
or  
 

(8) 
 

 
 

 
 

Quantity Vi,pk(i,j) denotes the set of vertices lying 
closer to vertex i than to vertex j, and are external with 
respect to path pk(i,j) (condition ph(i,v)∩ pk(i,j) ={}i ). Since 
in cycle-containing structures, various shortest paths 
pk(i,j), in general, lead to various sets Vi,pk(i,j), by definition, 
the (ij)-entries in the Cluj matrices are taken as max| 
Vi,pk(i,j)| . The diagonal entries are zero. For paths ph (i,v), 
no restrictions related to their length are imposed. 

The two Cluj matrices Mu allow the construction of 
the corresponding symmetric matrices Mp (defined on 
paths) and Me (defined on edges) by: 
 

Mp = Mu •  (Mu) T(9) 
 

Me = Mp •  A (10) 
 
 
where A is the adjacency matrix. Symbol •  means the 
Hadamard matrix product, i.e., (Ma •  Mb)ij = (Ma)ij (Mb)ij 
7. 

The Cluj indices are calculated as half-sum of the 
entries in a Cluj symmetric matrix, M,     (M = CJD, 
CJΔ ) 
 

IE (M) = (1/ 2) [ ] [ ]ijiji j
AM∑∑                  (11) 

 

[ ]
iji j

MMIP ∑∑= )2/1()(                 (12) 

 
The number defined on edge, IE, is an index while the 

number defined on path, IP is a hyper-index8. The Cluj 
Index of dendrimer nanostars computed recently in9. 

In this paper we obtain the Cluj indices for the first 
type dendrimer nanostar. 

 
 
2. Results 
 
Fig. 1 shows a first type dendrimer which has grown 

four stages. 
We denote IE׳

K (CJD) and IE׳
K (CJΔ) for the Cluj 

indices of K-connected hexagons according to there are 
three edges between each two hexagons. 

Theorem 1: IE׳
K (CJD) for K-connected hexagons 

according to there are three edges between each two 
hexagons are: 

 

 

 
Fig. 1. A first type dendrimer which has grown four 

stages. 
 

Theorem 2: IE׳
K (CJΔ) for K-connected hexagons 

according to there are three edges between each two 
hexagons equal to: 

 

 

 
 
 
3. Discussion and conclusions 
 
We denote IEn (CJD) and IEn (CJ∆) for the Cluj 

indices of the first type dendrimer which has grown n 
stages. 
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Definition 1. The sum of entries in the i-th row  of 
[CJD]ij[A]ij  is called valuation of i-th vertex (i.e., vi). 

Definition 2.  All of vertices which connected  to the 
near of three vertices is called junction vertices. 

Definition 3. The vertex is located out of hexagon 
called external vertex. 

Theorem 3: IEn (CJD) of the first type dendrimer is:  

 

 
 
where K=2n+1-1 and K2=׳n . 

Proof: At first we compute IE4 (CJD) of the first type 
dendrimer which has grown four stages (see Fig 1). Thus, 
we compute IEn (CJD) of this nanostar from stages n. 

As shown in Fig. 1, this graph is made out of a 
nucleus (see Fig. 2). 

 

 
Fig. 2. Nucleus. 

 
According the above definitions, the above nucleus is 

made out of one hexagon and one external vertex. Thus, 
the value of this external vertex is 1, the value of junction 
vertex is 14, the value of vertex to be opposite of junction 
vertex is 6 and four remainder vertices have the same 
value and equal to 7. Now, we can compute IE0 (CJD) (IE 
(CJD) of nucleus). Thus, we 

have 0
1( ) (6 4 7 14 1) 25
2

IE CJD = + × + + = . 

As shown in Fig 1 in the growth primary we have IE1 
(CJD) =288 (by TOPOCLUJ software). Now we can 
without count the external edge computed IE׳

3 (CJD) from 
theorem 1. Thus, we have IE׳

3 (CJD) =264. Therefore we 
have  

IE1 (CJD) =24+264=24+IE׳
3 (CJD). 

Now, we have IE2 (CJD) =1736 (by TOPOCLUJ 
software). But in this stage 4 connected hexagons add to 
the graph which has grown one stage. Therefore in the 
second  growth  stage all graphs have 7 connected 
hexagons. Thus, we have from Theorem 1, IE׳

7 (CJD) 
=1678, therefore  

IE2 (CJD) =58+1678=58+IE׳
7 (CJD). 

Now, we have IE3 (CJD) =6063 but in this stage 8 
connected hexagons add to the graph which has grown two 
stages. Therefore in the third growth stage, all graphs have 
15 connected hexagons. Thus, we have from Theorem 1, 
IE׳

15 (CJD) = 5937, and therefore                                                         
IE3 (CJD) =126+5937=126+IE׳

15 (CJD).  
This time, we have IE4 (CJD) =66236, but in this 

stage 16 connected hexagons add to graph which has 
grown three stages. Therefore in the fourth growth stage, 
all graphs have 31 connected       hexagons. Thus, we have 
from Theorem 1,  IE׳

31 (CJD) =65974, therefore                                                          
IE4 (CJD) =262+65974=262+IE׳

31 (CJD). Therefore, IE4 

(CJD) of the first type dendrimer which has grown four 
stages (see Fig 1) is  equal to 66236. 

        
       Now, suppose that the graph of figure1 has grown 

n≥1 stages,  thus we compute IEn (CJD) of the first type 
dendrimer. With consider growth process that we have 
number of connected hexagons which in each stage add to 
the graph as follows: 

 In the first stage 2 hexagons, in the second stage 22=4 
connected hexagons, in the third stage 23=8 connected 
hexagons and in the fourth stage 24=16 connected 
hexagons add to graph. If number of connected hexagons 
which in each stage add to graph is called K׳ , therefore we 
have K2=׳n . 

If we denote the number of all hexagons in graph for 
all stages by  K, then t we have 

 
Therefore we have                                                                                                

 
 

Thus, we have 

 

 
 
where K=2n+1-1 and K2=׳n

 .     Definition 4. The sum of entries in i-th row of 
[CJΔ]ij[A]ij is called valuation of i-th vertex  (i.e., vi). 

Theorem 4: IEn (CJΔ) of the first type dendrimer is 
equal to: 
 

 

 
 
where K=2n+1 -1 and K2=׳n . 
 

Proof: At first we compute IE4 (CJΔ) of the first type 
dendrimer which has grown four stages (see Fig 1). Thus, 
we compute IEn (CJΔ) of this nanostar from stages n. 

In Fig. 2, the value of external vertex is equal to 1, 
value of junction vertex is equal to 10 and the value of five 
reminder vertices  is equal to 2. Now, we can compute IE0 
(CJΔ) (IE (CJΔ) of nucleus). Thus, we have       

0
1( ) (1 10 5 2) 11
2

IE CJΔ = + + × =  . 

As shown in Fig. 1, in the first growth,  we have IE1 
(CJΔ) =150 (by TOPOCLUJ software). Now we can 
without count the external edges,  computed IE׳

3 (CJΔ) 
from Theorem 2. Thus, we have IE׳

3 (CJΔ) =132. 
Therefore we have IE1 (CJΔ) =18+132=24+IE׳

3 (CJΔ). 
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Now, we have IE2 (CJΔ) =908 (by TOPOCLUJ 
software). But in this stage 4 connected hexagons add to 
graph which has grown one stage. Therefore in the second 
stage of growth, all graphs have 7 connected hexagons. 
Thus, we have from Theorem 2,  IE׳

7 (CJΔ) =864, 
therefore IE2 (CJΔ) =44+864=44+IE׳

7 (CJΔ). 
Now, we have IE3 (CJΔ) =4344 but in this stage, 8 

connected hexagons add to the graph which has grown two 
stages. Therefore in the third stage of growth  all graphs 
have 15 connected hexagons. Thus, we have from 
Theorem 2, IE׳

15 (CJΔ) =4248, therefore IE3 (CJΔ) 
=96+4248=96+IE׳

15 (CJΔ).  
Thus, we have IE4 (CJΔ) =37592 but in this stage 16 

connected hexagons add to the graph which has grown 
three stages. Therefore in the fourth stage of growth,  all 
graphs have 31 connected hexagons. Thus, we have from 
Theorem 2, IE׳

31 (CJΔ) =37392, therefore IE4 (CJΔ) 
=200+37392=200+IE׳

31 (CJΔ). Therefore, IE4 (CJΔ) of the 
first type dendrimer which has grown four stages (see Fig. 
1) equal to 37592. 

Therefore we have 
 

 
 

Thus, we have 

 

 
 
where K=2n+1-1 and K2=׳n

 .     
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